
CS 4530: Fundamentals of Software Engineering

Module 5: Concurrency Patterns in Typescript

Adeel Bhutta, Jan Vitek, Mitch Wand

Khoury College of Computer Sciences

1

© 2023 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson

• At the end of this lesson, you should be prepared to:
• Explain how to achieve concurrency through asynchronous

operations and Promise.all in TypeScript.

• Write asynchronous and concurrent code in TypeScript using
async/await and Promise.all.

• Explain the difference between JS run-to-completion
semantics and interrupt-based semantics.

2

Masking Latency with Concurrency

• Consider: a 1Ghz CPU executes
an instruction every 1 ns

• Almost anything else takes
forever (approximately)

3

CPU 1

thread0() Main

Memory

CPU 1 Cache
100ns7ns SSD

150,000ns (just to read 4KB)

Magnetic HD

10,000,000ns (just to seek!)

Remote Computer

(Internet in between)

~100,000,000ns
Earth to moon: ~16,000,000 inches

• Utilize this “wasted” time by
doing something else
• Processing data

• Communicating with remote hosts

• Timers that countdown while our app is
running

• Waiting for users to provide input

Pre-emptive Multiprocessing

• OS manages multiprocessing with multiple
threads of execution

• Processes may be interrupted at
unpredictable times

• Inter-process communication by shared
memory

• Data races abound

• Really, really hard to get right: need critical
sections, semaphores, monitors (all that
stuff you learned about in op. sys.)

An alternative model: cooperative
multiprocessing

• OS manages multiprocessing with
multiple threads of execution

• In Typescript, these “threads” are called
promises.

• Each thread decides when it should yield
to let other threads execute

• Typically via a yield or await operation

A computation is not suspended until it hits
an ‘await’ or finishes.

• A computation is suspended when it hits
an ‘await’. The runtime system (node.js,
for us) chooses what to do next.

• This means that a computation runs
continuously until it is either suspended
or completed.

This is known as “Run to Completion”

JavaScript is Single-threaded language (with one call stack and one

memory heap) and it uses WebAPI to run asynchronous tasks

But where does the concurrency come from?

7

Diagram courtesy of c-sharpcorner.com

Answer: JS/TS has some primitives for
starting a concurrent computation

• These are things like http requests, I/O operations,
or timers.

• You will hardly ever call one of these primitives
yourself; usually they are wrapped in a convenient
procedure, e.g., we write

axios.get('https://rest-example.covey.town’)

to make an http request, or

fs.readFile(filename)

to read the contents of a file.

8

Pattern for starting a concurrent
computation

• The http request is sent immediately.

• A promise is created to run the more code after the http
call returns (i.e., the code after “awaits” is blocked)

• The call to makeRequest returns immediately.

9

async function makeRequest(requestNumber:number) {
// some code
const response =
await axios.get('https://rest-example.covey.town')

// more code
}

The pattern in action

10

export async function makeRequest(requestNumber:number) {
console.log(`makeRequest is about to start request ${requestNumber}`);
const response = await axios.get('https://rest-example.covey.town');
console.log(`makeRequest resumes request ${requestNumber}`)
console.log(`makeRequest reports that for request '${requestNumber}', server replied: `,

response.data);
}

console.log("main thread is about to call makeRequest");
makeRequest(1000);
console.log("main thread continues after makeRequest returns");
console.log("end of main thread")

$ npx ts-node example1
main thread is about to call makeRequest
makeRequest is about to start request 1000
main thread continues after makeRequest returns
end of main thread
makeRequest resumes request 1000
makeRequest reports that for request '1000', server replied: This is GET number 200 on the current
server

1. Axios.get starts the http

request in the background, and

2. Creates a promise to do the code

after the await.

3. The call to makeRequest

returns.

4. The main thread finishes.

5. The computation resumes

the promise

example1.ts

11

This makes it
simple to run
several
concurrent
requests

import makeRequest from './makeRequest';
import timeIt from './timeIt'

async function makeThreeSimpleRequests() {
makeRequest(1);
makeRequest(2);
makeRequest(3);
console.log("Three requests made; main thread finishes")

}

timeIt("main thread", makeThreeSimpleRequests)

$ npx ts-node example2
makeRequest is about to start request 1
makeRequest is about to start request 2
makeRequest is about to start request 3
Three requests made; main thread finishes
Elapsed time for main thread: 41.064 milliseconds
makeRequest reports that for request '3', server replied: This is GET number 223
on the current server
makeRequest reports that for request '1', server replied: This is GET number 224
on the current server
makeRequest reports that for request '2', server replied: This is GET number 225
on the current server

example2.ts

Requests are made in

order

But the response for

request 3 arrived at

the server before

request 1.

12

await
makes your
code more
sequential

import makeRequest from './makeRequest';
import timeIt from './timeIt'

async function makeThreeSerialRequests() {
await makeRequest(1);
await makeRequest(2);
await makeRequest(3);
console.log("Three requests made; main thread finishes")

}

timeIt("main thread", makeThreeSerialRequests)

$ npx ts-node example3
makeRequest is about to start request 1
makeRequest reports that for request '1', server replied: This is GET
number 232 on the current server
makeRequest is about to start request 2
makeRequest reports that for request '2', server replied: This is GET
number 233 on the current server
makeRequest is about to start request 3
makeRequest reports that for request '3', server replied: This is GET
number 234 on the current server
Three requests made; main thread finishes
Elapsed time for main thread: 800.270 milliseconds

example3.ts

Second request doesn’t start

until to first request returns

Promises are values; async
functions return promises

13

async function makeThreeSimpleRequests() {
const p1 : Promise<void> = makeRequest(1);
const p2 : Promise<void> = makeRequest(2);
const p3 : Promise<void> = makeRequest(3);
const thePromises = [p1,p2,p3]
console.log(`main thread reports: thePromises = [${thePromises}]`)
console.log(`main thread finishes`)

}

timeIt("main thread", makeThreeSimpleRequests)

$ npx ts-node example4
makeRequest is about to start request 1
makeRequest is about to start request 2
makeRequest is about to start request 3
main thread reports: thePromises = [[object Promise],[object Promise],[object Promise]]
main thread finishes
Elapsed time for main thread: 36.501 milliseconds
makeRequest reports that for request '2', server replied: This is GET number 248 on the current server
makeRequest reports that for request '3', server replied: This is GET number 247 on the current server
makeRequest reports that for request '1', server replied: This is GET number 249 on the current server

So, you can make lists of them!

example4.ts

Promise.all allows you to wait for all
of the promises in a list to finish

14

async function makeThreeConcurrentRequests() {
const p1 : Promise<void> = makeRequest(1);
const p2 : Promise<void> = makeRequest(2);
const p3 : Promise<void> = makeRequest(3);
const thePromises = [p1,p2,p3]
await Promise.all(thePromises)
console.log(`main thread reports: thePromises = [${thePromises}]`)
console.log(`main thread finishes`)

}

timeIt("main thread", makeThreeConcurrentRequests)

$ npx ts-node example5
makeRequest is about to start request 1
makeRequest is about to start request 2
makeRequest is about to start request 3
makeRequest reports that for request '2', server replied: This is GET number 259 on the current server
makeRequest reports that for request '1', server replied: This is GET number 260 on the current server
makeRequest reports that for request '3', server replied: This is GET number 261 on the current server
main thread reports: thePromises = [[object Promise],[object Promise],[object Promise]]
main thread finishes
Elapsed time for main thread: 256.518 milliseconds

example5.ts

Main thread doesn’t resume until

ALL of the promises are satisfied

async function makeThreeConcurrentRequests():
Promise<void> {

await Promise.all([
makeOneGetRequest(1),
makeOneGetRequest(2),
makeOneGetRequest(3)

])
console.log('Heard back from all of the requests')

}

Visualizing Promise.all (1)

async function makeThreeSerialRequests():
Promise<void> {

await makeOneGetRequest(1);
await makeOneGetRequest(2);
await makeOneGetRequest(3);
console.log('Heard back from all of the

requests')
}

Sequential version: ~206 msec Concurrent version: ~80 msec

“Don’t make another request
until you got the last response

back”

“Make all of the requests now,
then wait for all of the

responses”

Visualizing Promise.all (2)

Time Time

makeOneGetRequest #1

wait for response rs

makeOneGetRequest #3

wait for response rs

makeOneGetRequest #2

wait for response rs

makeOneGetRequest #1

wait for response rs

makeOneGetRequest #3

wait for response rs

makeOneGetRequest #2

wait for response rs

r

s send

receive

async function makeThreeConcurrentRequests():
Promise<void> {

await Promise.all([
makeOneGetRequest(1),
makeOneGetRequest(2),
makeOneGetRequest(3)

])
console.log('Heard back from all of the requests')

}

async function makeThreeSerialRequests():
Promise<void> {

await makeOneGetRequest(1);
await makeOneGetRequest(2);
await makeOneGetRequest(3);
console.log('Heard back from all of the

requests')
}

Sequential version: ~206 msec Concurrent version: ~80 msec

An Example Task Using the
Transcript Server

• Given an array of StudentIDs:

• Request each student’s transcript, and save it to disk so that
we have a copy, and calculate its size

• Once all of the pages are downloaded and saved, print out the
total size of all of the files that were saved

Generating a promise for each
student

18

async function asyncGetStudentData(studentID: number) {
const returnValue =
await axios.get(`https://rest-example.covey.town/transcripts/${studentID}`)

return returnValue
}

async function asyncProcessStudent(studentID: number) : Promise<number> {
// wait to get the student data
const response = await asyncGetStudentData(studentID)
// asynchronously write the file
await fsPromises.writeFile(

dataFileName(studentID),
JSON.stringify(response.data))

// last, extract its size
const stats = await fsPromises.stat(dataFileName(studentID))
const size : number = stats.size
return size

}

Calling await gives other processes a

chance to run.

Running the student processes
concurrently

19

async function runClientAsync(studentIDs:number[]) {
console.log(`Generating Promises for ${studentIDs}`);
const studentPromises =

studentIDs.map(studentID => asyncProcessStudent(studentID)) ;
console.log('Promises Created!');
console.log('Satisfying Promises Concurrently')
const sizes = await Promise.all(studentPromises);
console.log(sizes)
const totalSize = sum(sizes)
console.log(`Finished calculating size: ${totalSize}`);
console.log('Done');

}

Map-promises pattern: take a list of

elements and generate a list of

promises, one per element

Output

20

$ npx ts-node transcript-v2.simple.ts
Generating Promises for 411,412,423
Promises Created!
Satisfying Promises Concurrently
[151, 92, 145]
Finished calculating size: 388
Done

runClientAsync([411,412,423])

But what if there’s an error?

21

runClientAsync([411,412,87065,423,23044])

$ npx ts-node transcript-v2.simple.ts
Generating Promises for 411,412,87065,423,23044
Promises Created!
Satisfying Promises Concurrently

C:\Users\wand\OneDrive\Documents\Work\Courses\CS 4530
Future\My Modules Workspace\Module 05 Concurrency
Patterns\Examples\Lecture05-
Async\node_modules\axios\lib\core\createError.js:16
var error = new Error(message);

^
Error: Request failed with status code 404

Oops!

Need to catch the error

22

type StudentData = {isOK: boolean, id: number, payload?: any }

/** asynchronously retrieves student data, */
async function asyncGetStudentData(studentID: number): Promise<StudentData> {

try {
const returnValue =
await axios.get(`https://rest-example.covey.town/transcripts/${studentID}`)

return { isOK: true, id: studentID, payload: returnValue }
} catch (e) {

return { isOK: false, id: studentID }
}

}

Catch the error and transmit it in a

form the rest of the caller can

handle.

And recover from the error…

23

async function asyncProcessStudent(studentID: number): Promise<number> {
// wait to get the student data
const response = await asyncGetStudentData(studentID)
if (!(response.isOK)) {

console.error(`bad student ID ${studentID}`)
return 0

} else {
await fsPromises.writeFile(

dataFileName(studentID),
JSON.stringify(response.payload.data))

// last, extract its size
const stats = await fsPromises.stat(dataFileName(studentID))
const size: number = stats.size
return size

}
}

Design decision: if we have a bad

student ID, we’ll print out an error

message, and count that as 0

towards the total.

New output

24

runClientAsync([411,32789,412,423,10202040])

$ npx ts-node transcript-v2.handle-errors.ts
Generating Promises for 411,32789,412,423,10202040
Promises Created!
Wait for all promises to be satisfied
bad student ID 32789
bad student ID 10202040
[151, 0, 92, 145, 0]
Finished calculating size: 388
Done

Pattern for testing an async function

25

import axios from 'axios'

async function echo(str: string) : Promise<string> {
const res =

await axios.get(`https://httpbin.org/get?answer=${str}`)
return res.data.args.answer

}

test('request should return its argument', async () => {
expect.assertions(1)
await expect(echo("33")).resolves.toEqual("33")

})

General Rules for Writing Asynchronous
Code

• You can’t return a value from an async procedure to an
ordinary procedure.
• Call async procedures only from other async functions or

from the top level.

• Break up any long-running computation into
async/await segments so other processes will have a
chance to run.

• Leverage concurrency when possible
• Use promise.all if you need to wait for multiple promises to

return.

• Check for errors with try/catch

Odds and Ends You Should Know
About

27

Async/await code is compiled into
promise/then code

async function

makeThreeSerialRequests(){

1. console.log('Making first

request’);

2. await makeOneGetRequest();

3. console.log('Making second

request’);

4. await makeOneGetRequest();

5. console.log('Making third

request’);

6. await makeOneGetRequest();

7. console.log('All done!');

}

makeThreeSerialRequests();

console.log('Making first request');

makeOneGetRequest().then(() =>{

console.log('Making second request');

return makeOneGetRequest();

}).then(() => {

console.log('Making third request');

return makeOneGetRequest();

}).then(()=>{

console.log('All done!');

});

Promises Enforce Ordering Through “Then”

• axios.get returns a
promise.

• p.then mutates that
promise so that the then
block is run immediately
after the original promise
returns.

• The resulting promise
isn’t completed until the
then block finishes.

• You can chain .then’s, to
get things that look like
p.then().then().then()

1. console.log('Making requests');

2. axios.get('https://rest-example.covey.town/')

.then((response) =>{

console.log('Heard back from server');

console.log(response.data);

});

3. axios.get('https://www.google.com/')

.then((response) =>{

console.log('Heard back from Google');

});

4. axios.get('https://www.facebook.com/')

.then((response) =>{

console.log('Heard back from Facebook');

});

5. console.log('Requests sent!');

You can still have a data race

30

let x : number = 10

async function asyncDouble() {
// start an asynchronous computation and wait for the result
await makeOneGetRequest(1);
x = x * 2 // statement 1

}

async function asyncIncrementTwice() {
// start an asynchronous computation and wait for the result
await makeOneGetRequest(2);
x = x + 1; // statement 2
x = x + 1; // statement 3

}

async function run() {
await Promise.all([asyncDouble(), asyncIncrementTwice()])
console.log(x)

}

This is not Java!

31

let x : number = 10

async function asyncDouble() {
// start an asynchronous computation and wait for the result
await makeOneGetRequest(1);
x = x * 2 // statement 1

}

async function asyncIncrementTwice() {
// start an asynchronous computation and wait for the result
await makeOneGetRequest(2);
x = x + 1; // statement 2
// nothing can happen between these two statements!!
x = x + 1; // statement 3

}

async function run() {
await Promise.all([asyncDouble(), asyncIncrementTwice()])
console.log(x)

}

The Self-Ticking Clock

• To make the clock self-ticking, add the
following line to your clock:

32

constructor () {
setInterval(() => {this.tick()},50)

}

Async/Await Programming Activity

Download the activity (includes instructions in README.md):
Linked from course webpage for Module 5

• Your task is to write a new async function,
importGrades, which takes in input of the
type ImportTranscript[].

• importGrades should create a student record
for each ImportTranscript, and then post the
grades for each of those students.

• After posting the grades, it should fetch the
transcripts for each student and return an
array of transcripts.

Learning Goals for this Lesson

• At the end of this lesson, you should be prepared to:
• Explain how to achieve concurrency through asynchronous

operations and Promise.all in TypeScript.

• Write asynchronous and concurrent code in TypeScript using
async/await and Promise.all.

• Explain the difference between JS run-to-completion
semantics and interrupt-based semantics.

34

	Slide 1: CS 4530: Fundamentals of Software Engineering Module 5: Concurrency Patterns in Typescript
	Slide 2: Learning Goals for this Lesson
	Slide 3: Masking Latency with Concurrency
	Slide 4: Pre-emptive Multiprocessing
	Slide 5: An alternative model: cooperative multiprocessing
	Slide 6: A computation is not suspended until it hits an ‘await’ or finishes.
	Slide 7: But where does the concurrency come from?
	Slide 8: Answer: JS/TS has some primitives for starting a concurrent computation
	Slide 9: Pattern for starting a concurrent computation
	Slide 10: The pattern in action
	Slide 11
	Slide 12: await makes your code more sequential
	Slide 13: Promises are values; async functions return promises
	Slide 14: Promise.all allows you to wait for all of the promises in a list to finish
	Slide 15: Visualizing Promise.all (1)
	Slide 16: Visualizing Promise.all (2)
	Slide 17: An Example Task Using the Transcript Server
	Slide 18: Generating a promise for each student
	Slide 19: Running the student processes concurrently
	Slide 20: Output
	Slide 21: But what if there’s an error?
	Slide 22: Need to catch the error
	Slide 23: And recover from the error…
	Slide 24: New output
	Slide 25: Pattern for testing an async function
	Slide 26: General Rules for Writing Asynchronous Code
	Slide 27: Odds and Ends You Should Know About
	Slide 28: Async/await code is compiled into promise/then code
	Slide 29: Promises Enforce Ordering Through “Then”
	Slide 30: You can still have a data race
	Slide 31: This is not Java!
	Slide 32: The Self-Ticking Clock
	Slide 33: Async/Await Programming Activity
	Slide 34: Learning Goals for this Lesson

